Metamath Proof Explorer


Theorem cbvopab1v

Description: Rule used to change the first bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 31-Jul-2003) (Proof shortened by Eric Schmidt, 4-Apr-2007)

Ref Expression
Hypothesis cbvopab1v.1 x = z φ ψ
Assertion cbvopab1v x y | φ = z y | ψ

Proof

Step Hyp Ref Expression
1 cbvopab1v.1 x = z φ ψ
2 nfv z φ
3 nfv x ψ
4 2 3 1 cbvopab1 x y | φ = z y | ψ