Metamath Proof Explorer


Theorem cbvopab2

Description: Change second bound variable in an ordered-pair class abstraction, using explicit substitution. (Contributed by NM, 22-Aug-2013)

Ref Expression
Hypotheses cbvopab2.1 z φ
cbvopab2.2 y ψ
cbvopab2.3 y = z φ ψ
Assertion cbvopab2 x y | φ = x z | ψ

Proof

Step Hyp Ref Expression
1 cbvopab2.1 z φ
2 cbvopab2.2 y ψ
3 cbvopab2.3 y = z φ ψ
4 nfv z w = x y
5 4 1 nfan z w = x y φ
6 nfv y w = x z
7 6 2 nfan y w = x z ψ
8 opeq2 y = z x y = x z
9 8 eqeq2d y = z w = x y w = x z
10 9 3 anbi12d y = z w = x y φ w = x z ψ
11 5 7 10 cbvexv1 y w = x y φ z w = x z ψ
12 11 exbii x y w = x y φ x z w = x z ψ
13 12 abbii w | x y w = x y φ = w | x z w = x z ψ
14 df-opab x y | φ = w | x y w = x y φ
15 df-opab x z | ψ = w | x z w = x z ψ
16 13 14 15 3eqtr4i x y | φ = x z | ψ