Metamath Proof Explorer


Theorem cbvopab2v

Description: Rule used to change the second bound variable in an ordered pair abstraction, using implicit substitution. (Contributed by NM, 2-Sep-1999)

Ref Expression
Hypothesis cbvopab2v.1 y = z φ ψ
Assertion cbvopab2v x y | φ = x z | ψ

Proof

Step Hyp Ref Expression
1 cbvopab2v.1 y = z φ ψ
2 opeq2 y = z x y = x z
3 2 eqeq2d y = z w = x y w = x z
4 3 1 anbi12d y = z w = x y φ w = x z ψ
5 4 cbvexvw y w = x y φ z w = x z ψ
6 5 exbii x y w = x y φ x z w = x z ψ
7 6 abbii w | x y w = x y φ = w | x z w = x z ψ
8 df-opab x y | φ = w | x y w = x y φ
9 df-opab x z | ψ = w | x z w = x z ψ
10 7 8 9 3eqtr4i x y | φ = x z | ψ