Metamath Proof Explorer


Theorem cbvopabv

Description: Rule used to change bound variables in an ordered-pair class abstraction, using implicit substitution. (Contributed by NM, 15-Oct-1996) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypothesis cbvopabv.1 x = z y = w φ ψ
Assertion cbvopabv x y | φ = z w | ψ

Proof

Step Hyp Ref Expression
1 cbvopabv.1 x = z y = w φ ψ
2 opeq12 x = z y = w x y = z w
3 2 eqeq2d x = z y = w v = x y v = z w
4 3 1 anbi12d x = z y = w v = x y φ v = z w ψ
5 4 cbvex2vw x y v = x y φ z w v = z w ψ
6 5 abbii v | x y v = x y φ = v | z w v = z w ψ
7 df-opab x y | φ = v | x y v = x y φ
8 df-opab z w | ψ = v | z w v = z w ψ
9 6 7 8 3eqtr4i x y | φ = z w | ψ