Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Ordered-pair class abstractions (class builders)
cbvopabvOLD
Metamath Proof Explorer
Description: Obsolete version of cbvopabv as of 15-Oct-2024. (Contributed by NM , 15-Oct-1996) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
cbvopabvOLD.1
⊢ x = z ∧ y = w → φ ↔ ψ
Assertion
cbvopabvOLD
⊢ x y | φ = z w | ψ
Proof
Step
Hyp
Ref
Expression
1
cbvopabvOLD.1
⊢ x = z ∧ y = w → φ ↔ ψ
2
nfv
⊢ Ⅎ z φ
3
nfv
⊢ Ⅎ w φ
4
nfv
⊢ Ⅎ x ψ
5
nfv
⊢ Ⅎ y ψ
6
2 3 4 5 1
cbvopab
⊢ x y | φ = z w | ψ