Metamath Proof Explorer


Theorem cbvoprab1

Description: Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008) (Revised by Mario Carneiro, 5-Dec-2016)

Ref Expression
Hypotheses cbvoprab1.1 w φ
cbvoprab1.2 x ψ
cbvoprab1.3 x = w φ ψ
Assertion cbvoprab1 x y z | φ = w y z | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab1.1 w φ
2 cbvoprab1.2 x ψ
3 cbvoprab1.3 x = w φ ψ
4 nfv w v = x y
5 4 1 nfan w v = x y φ
6 5 nfex w y v = x y φ
7 nfv x v = w y
8 7 2 nfan x v = w y ψ
9 8 nfex x y v = w y ψ
10 opeq1 x = w x y = w y
11 10 eqeq2d x = w v = x y v = w y
12 11 3 anbi12d x = w v = x y φ v = w y ψ
13 12 exbidv x = w y v = x y φ y v = w y ψ
14 6 9 13 cbvexv1 x y v = x y φ w y v = w y ψ
15 14 opabbii v z | x y v = x y φ = v z | w y v = w y ψ
16 dfoprab2 x y z | φ = v z | x y v = x y φ
17 dfoprab2 w y z | ψ = v z | w y v = w y ψ
18 15 16 17 3eqtr4i x y z | φ = w y z | ψ