Metamath Proof Explorer


Theorem cbvoprab12v

Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004)

Ref Expression
Hypothesis cbvoprab12v.1 x = w y = v φ ψ
Assertion cbvoprab12v x y z | φ = w v z | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab12v.1 x = w y = v φ ψ
2 nfv w φ
3 nfv v φ
4 nfv x ψ
5 nfv y ψ
6 2 3 4 5 1 cbvoprab12 x y z | φ = w v z | ψ