Metamath Proof Explorer


Theorem cbvoprab12v

Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004)

Ref Expression
Hypothesis cbvoprab12v.1 x = w y = v φ ψ
Assertion cbvoprab12v x y z | φ = w v z | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab12v.1 x = w y = v φ ψ
2 opeq12 x = w y = v x y = w v
3 2 opeq1d x = w y = v x y z = w v z
4 3 eqeq2d x = w y = v u = x y z u = w v z
5 4 1 anbi12d x = w y = v u = x y z φ u = w v z ψ
6 5 exbidv x = w y = v z u = x y z φ z u = w v z ψ
7 6 cbvex2vw x y z u = x y z φ w v z u = w v z ψ
8 7 abbii u | x y z u = x y z φ = u | w v z u = w v z ψ
9 df-oprab x y z | φ = u | x y z u = x y z φ
10 df-oprab w v z | ψ = u | w v z u = w v z ψ
11 8 9 10 3eqtr4i x y z | φ = w v z | ψ