Metamath Proof Explorer


Theorem cbvoprab2

Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypotheses cbvoprab2.1 w φ
cbvoprab2.2 y ψ
cbvoprab2.3 y = w φ ψ
Assertion cbvoprab2 x y z | φ = x w z | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab2.1 w φ
2 cbvoprab2.2 y ψ
3 cbvoprab2.3 y = w φ ψ
4 nfv w v = x y z
5 4 1 nfan w v = x y z φ
6 5 nfex w z v = x y z φ
7 nfv y v = x w z
8 7 2 nfan y v = x w z ψ
9 8 nfex y z v = x w z ψ
10 opeq2 y = w x y = x w
11 10 opeq1d y = w x y z = x w z
12 11 eqeq2d y = w v = x y z v = x w z
13 12 3 anbi12d y = w v = x y z φ v = x w z ψ
14 13 exbidv y = w z v = x y z φ z v = x w z ψ
15 6 9 14 cbvexv1 y z v = x y z φ w z v = x w z ψ
16 15 exbii x y z v = x y z φ x w z v = x w z ψ
17 16 abbii v | x y z v = x y z φ = v | x w z v = x w z ψ
18 df-oprab x y z | φ = v | x y z v = x y z φ
19 df-oprab x w z | ψ = v | x w z v = x w z ψ
20 17 18 19 3eqtr4i x y z | φ = x w z | ψ