Metamath Proof Explorer


Theorem cbvoprab3v

Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypothesis cbvoprab3v.1 z = w φ ψ
Assertion cbvoprab3v x y z | φ = x y w | ψ

Proof

Step Hyp Ref Expression
1 cbvoprab3v.1 z = w φ ψ
2 opeq2 z = w x y z = x y w
3 2 eqeq2d z = w v = x y z v = x y w
4 3 1 anbi12d z = w v = x y z φ v = x y w ψ
5 4 cbvexvw z v = x y z φ w v = x y w ψ
6 5 2exbii x y z v = x y z φ x y w v = x y w ψ
7 6 abbii v | x y z v = x y z φ = v | x y w v = x y w ψ
8 df-oprab x y z | φ = v | x y z v = x y z φ
9 df-oprab x y w | ψ = v | x y w v = x y w ψ
10 7 8 9 3eqtr4i x y z | φ = x y w | ψ