Metamath Proof Explorer


Theorem cbvprod

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprod.1 j = k B = C
cbvprod.2 _ k A
cbvprod.3 _ j A
cbvprod.4 _ k B
cbvprod.5 _ j C
Assertion cbvprod j A B = k A C

Proof

Step Hyp Ref Expression
1 cbvprod.1 j = k B = C
2 cbvprod.2 _ k A
3 cbvprod.3 _ j A
4 cbvprod.4 _ k B
5 cbvprod.5 _ j C
6 biid A m A m
7 2 nfcri k j A
8 nfcv _ k 1
9 7 4 8 nfif _ k if j A B 1
10 3 nfcri j k A
11 nfcv _ j 1
12 10 5 11 nfif _ j if k A C 1
13 eleq1w j = k j A k A
14 13 1 ifbieq1d j = k if j A B 1 = if k A C 1
15 9 12 14 cbvmpt j if j A B 1 = k if k A C 1
16 seqeq3 j if j A B 1 = k if k A C 1 seq n × j if j A B 1 = seq n × k if k A C 1
17 15 16 ax-mp seq n × j if j A B 1 = seq n × k if k A C 1
18 17 breq1i seq n × j if j A B 1 y seq n × k if k A C 1 y
19 18 anbi2i y 0 seq n × j if j A B 1 y y 0 seq n × k if k A C 1 y
20 19 exbii y y 0 seq n × j if j A B 1 y y y 0 seq n × k if k A C 1 y
21 20 rexbii n m y y 0 seq n × j if j A B 1 y n m y y 0 seq n × k if k A C 1 y
22 seqeq3 j if j A B 1 = k if k A C 1 seq m × j if j A B 1 = seq m × k if k A C 1
23 15 22 ax-mp seq m × j if j A B 1 = seq m × k if k A C 1
24 23 breq1i seq m × j if j A B 1 x seq m × k if k A C 1 x
25 6 21 24 3anbi123i A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
26 25 rexbii m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x
27 4 5 1 cbvcsbw f n / j B = f n / k C
28 27 mpteq2i n f n / j B = n f n / k C
29 seqeq3 n f n / j B = n f n / k C seq 1 × n f n / j B = seq 1 × n f n / k C
30 28 29 ax-mp seq 1 × n f n / j B = seq 1 × n f n / k C
31 30 fveq1i seq 1 × n f n / j B m = seq 1 × n f n / k C m
32 31 eqeq2i x = seq 1 × n f n / j B m x = seq 1 × n f n / k C m
33 32 anbi2i f : 1 m 1-1 onto A x = seq 1 × n f n / j B m f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
34 33 exbii f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
35 34 rexbii m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
36 26 35 orbi12i m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
37 36 iotabii ι x | m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
38 df-prod j A B = ι x | m A m n m y y 0 seq n × j if j A B 1 y seq m × j if j A B 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / j B m
39 df-prod k A C = ι x | m A m n m y y 0 seq n × k if k A C 1 y seq m × k if k A C 1 x m f f : 1 m 1-1 onto A x = seq 1 × n f n / k C m
40 37 38 39 3eqtr4i j A B = k A C