Metamath Proof Explorer


Theorem cbvprodi

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypotheses cbvprodi.1 _ k B
cbvprodi.2 _ j C
cbvprodi.3 j = k B = C
Assertion cbvprodi j A B = k A C

Proof

Step Hyp Ref Expression
1 cbvprodi.1 _ k B
2 cbvprodi.2 _ j C
3 cbvprodi.3 j = k B = C
4 nfcv _ k A
5 nfcv _ j A
6 3 4 5 1 2 cbvprod j A B = k A C