Metamath Proof Explorer


Theorem cbvprodv

Description: Change bound variable in a product. (Contributed by Scott Fenton, 4-Dec-2017)

Ref Expression
Hypothesis cbvprod.1 j = k B = C
Assertion cbvprodv j A B = k A C

Proof

Step Hyp Ref Expression
1 cbvprod.1 j = k B = C
2 nfcv _ k A
3 nfcv _ j A
4 nfcv _ k B
5 nfcv _ j C
6 1 2 3 4 5 cbvprod j A B = k A C