Metamath Proof Explorer


Theorem cbvrabv

Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. (Contributed by NM, 26-May-1999) Require x , y be disjoint to avoid ax-11 and ax-13 . (Revised by Steven Nguyen, 4-Dec-2022)

Ref Expression
Hypothesis cbvrabv.1 x = y φ ψ
Assertion cbvrabv x A | φ = y A | ψ

Proof

Step Hyp Ref Expression
1 cbvrabv.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 anbi12d x = y x A φ y A ψ
4 3 cbvabv x | x A φ = y | y A ψ
5 df-rab x A | φ = x | x A φ
6 df-rab y A | ψ = y | y A ψ
7 4 5 6 3eqtr4i x A | φ = y A | ψ