Metamath Proof Explorer


Theorem cbvrabv2w

Description: A more general version of cbvrabv . Version of cbvrabv2 with a disjoint variable condition, which does not require ax-13 . (Contributed by Glauco Siliprandi, 23-Oct-2021) (Revised by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrabv2w.1 x = y A = B
cbvrabv2w.2 x = y φ ψ
Assertion cbvrabv2w x A | φ = y B | ψ

Proof

Step Hyp Ref Expression
1 cbvrabv2w.1 x = y A = B
2 cbvrabv2w.2 x = y φ ψ
3 id x = y x = y
4 3 1 eleq12d x = y x A y B
5 4 2 anbi12d x = y x A φ y B ψ
6 5 cbvabv x | x A φ = y | y B ψ
7 df-rab x A | φ = x | x A φ
8 df-rab y B | ψ = y | y B ψ
9 6 7 8 3eqtr4i x A | φ = y B | ψ