Metamath Proof Explorer


Theorem cbvral2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral2vw when possible. (Contributed by NM, 10-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral2v.1 x = z φ χ
cbvral2v.2 y = w χ ψ
Assertion cbvral2v x A y B φ z A w B ψ

Proof

Step Hyp Ref Expression
1 cbvral2v.1 x = z φ χ
2 cbvral2v.2 y = w χ ψ
3 1 ralbidv x = z y B φ y B χ
4 3 cbvralv x A y B φ z A y B χ
5 2 cbvralv y B χ w B ψ
6 5 ralbii z A y B χ z A w B ψ
7 4 6 bitri x A y B φ z A w B ψ