Metamath Proof Explorer


Theorem cbvral3v

Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvral3vw when possible. (Contributed by NM, 10-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cbvral3v.1 x = w φ χ
cbvral3v.2 y = v χ θ
cbvral3v.3 z = u θ ψ
Assertion cbvral3v x A y B z C φ w A v B u C ψ

Proof

Step Hyp Ref Expression
1 cbvral3v.1 x = w φ χ
2 cbvral3v.2 y = v χ θ
3 cbvral3v.3 z = u θ ψ
4 1 2ralbidv x = w y B z C φ y B z C χ
5 4 cbvralv x A y B z C φ w A y B z C χ
6 2 3 cbvral2v y B z C χ v B u C ψ
7 6 ralbii w A y B z C χ w A v B u C ψ
8 5 7 bitri x A y B z C φ w A v B u C ψ