Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Restricted quantification Restricted universal and existential quantification cbvral3vw  
				
		 
		
			
		 
		Description:   Change bound variables of triple restricted universal quantification,
       using implicit substitution.  Version of cbvral3v  with a disjoint
       variable condition, which does not require ax-13  .  (Contributed by NM , 10-May-2005)   Avoid ax-13  .  (Revised by GG , 10-Jan-2024) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						cbvral3vw.1    ⊢   x  =  w    →    φ   ↔   χ         
					 
					
						cbvral3vw.2    ⊢   y  =  v    →    χ   ↔   θ         
					 
					
						cbvral3vw.3    ⊢   z  =  u    →    θ   ↔   ψ         
					 
				
					Assertion 
					cbvral3vw    ⊢   ∀  x  ∈  A   ∀  y  ∈  B   ∀  z  ∈  C   φ         ↔   ∀  w  ∈  A   ∀  v  ∈  B   ∀  u  ∈  C   ψ              
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							cbvral3vw.1   ⊢   x  =  w    →    φ   ↔   χ         
						
							2 
								
							 
							cbvral3vw.2   ⊢   y  =  v    →    χ   ↔   θ         
						
							3 
								
							 
							cbvral3vw.3   ⊢   z  =  u    →    θ   ↔   ψ         
						
							4 
								1 
							 
							2ralbidv   ⊢   x  =  w    →    ∀  y  ∈  B   ∀  z  ∈  C   φ       ↔   ∀  y  ∈  B   ∀  z  ∈  C   χ             
						
							5 
								4 
							 
							cbvralvw   ⊢   ∀  x  ∈  A   ∀  y  ∈  B   ∀  z  ∈  C   φ         ↔   ∀  w  ∈  A   ∀  y  ∈  B   ∀  z  ∈  C   χ              
						
							6 
								2  3 
							 
							cbvral2vw   ⊢   ∀  y  ∈  B   ∀  z  ∈  C   χ       ↔   ∀  v  ∈  B   ∀  u  ∈  C   ψ            
						
							7 
								6 
							 
							ralbii   ⊢   ∀  w  ∈  A   ∀  y  ∈  B   ∀  z  ∈  C   χ         ↔   ∀  w  ∈  A   ∀  v  ∈  B   ∀  u  ∈  C   ψ              
						
							8 
								5  7 
							 
							bitri   ⊢   ∀  x  ∈  A   ∀  y  ∈  B   ∀  z  ∈  C   φ         ↔   ∀  w  ∈  A   ∀  v  ∈  B   ∀  u  ∈  C   ψ