Metamath Proof Explorer


Theorem cbvral3vw

Description: Change bound variables of triple restricted universal quantification, using implicit substitution. Version of cbvral3v with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-May-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvral3vw.1 x = w φ χ
cbvral3vw.2 y = v χ θ
cbvral3vw.3 z = u θ ψ
Assertion cbvral3vw x A y B z C φ w A v B u C ψ

Proof

Step Hyp Ref Expression
1 cbvral3vw.1 x = w φ χ
2 cbvral3vw.2 y = v χ θ
3 cbvral3vw.3 z = u θ ψ
4 1 2ralbidv x = w y B z C φ y B z C χ
5 4 cbvralvw x A y B z C φ w A y B z C χ
6 2 3 cbvral2vw y B z C χ v B u C ψ
7 6 ralbii w A y B z C χ w A v B u C ψ
8 5 7 bitri x A y B z C φ w A v B u C ψ