Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvral3vw
Metamath Proof Explorer
Description: Change bound variables of triple restricted universal quantification,
using implicit substitution. Version of cbvral3v with a disjoint
variable condition, which does not require ax-13 . (Contributed by NM , 10-May-2005) (Revised by Gino Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvral3vw.1
⊢ x = w → φ ↔ χ
cbvral3vw.2
⊢ y = v → χ ↔ θ
cbvral3vw.3
⊢ z = u → θ ↔ ψ
Assertion
cbvral3vw
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ
Proof
Step
Hyp
Ref
Expression
1
cbvral3vw.1
⊢ x = w → φ ↔ χ
2
cbvral3vw.2
⊢ y = v → χ ↔ θ
3
cbvral3vw.3
⊢ z = u → θ ↔ ψ
4
1
2ralbidv
⊢ x = w → ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ y ∈ B ∀ z ∈ C χ
5
4
cbvralvw
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ y ∈ B ∀ z ∈ C χ
6
2 3
cbvral2vw
⊢ ∀ y ∈ B ∀ z ∈ C χ ↔ ∀ v ∈ B ∀ u ∈ C ψ
7
6
ralbii
⊢ ∀ w ∈ A ∀ y ∈ B ∀ z ∈ C χ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ
8
5 7
bitri
⊢ ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C φ ↔ ∀ w ∈ A ∀ v ∈ B ∀ u ∈ C ψ