Metamath Proof Explorer


Theorem cbvral4vw

Description: Change bound variables of quadruple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypotheses cbvral4vw.1 x = a φ χ
cbvral4vw.2 y = b χ θ
cbvral4vw.3 z = c θ τ
cbvral4vw.4 w = d τ ψ
Assertion cbvral4vw x A y B z C w D φ a A b B c C d D ψ

Proof

Step Hyp Ref Expression
1 cbvral4vw.1 x = a φ χ
2 cbvral4vw.2 y = b χ θ
3 cbvral4vw.3 z = c θ τ
4 cbvral4vw.4 w = d τ ψ
5 1 ralbidv x = a w D φ w D χ
6 2 ralbidv y = b w D χ w D θ
7 3 ralbidv z = c w D θ w D τ
8 5 6 7 cbvral3vw x A y B z C w D φ a A b B c C w D τ
9 4 cbvralvw w D τ d D ψ
10 9 3ralbii a A b B c C w D τ a A b B c C d D ψ
11 8 10 bitri x A y B z C w D φ a A b B c C d D ψ