Metamath Proof Explorer


Theorem cbvral6vw

Description: Change bound variables of sextuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypotheses cbvral6vw.1 x = a φ χ
cbvral6vw.2 y = b χ θ
cbvral6vw.3 z = c θ τ
cbvral6vw.4 w = d τ η
cbvral6vw.5 p = e η ζ
cbvral6vw.6 q = f ζ ψ
Assertion cbvral6vw x A y B z C w D p E q F φ a A b B c C d D e E f F ψ

Proof

Step Hyp Ref Expression
1 cbvral6vw.1 x = a φ χ
2 cbvral6vw.2 y = b χ θ
3 cbvral6vw.3 z = c θ τ
4 cbvral6vw.4 w = d τ η
5 cbvral6vw.5 p = e η ζ
6 cbvral6vw.6 q = f ζ ψ
7 1 2ralbidv x = a p E q F φ p E q F χ
8 2 2ralbidv y = b p E q F χ p E q F θ
9 3 2ralbidv z = c p E q F θ p E q F τ
10 4 2ralbidv w = d p E q F τ p E q F η
11 7 8 9 10 cbvral4vw x A y B z C w D p E q F φ a A b B c C d D p E q F η
12 5 6 cbvral2vw p E q F η e E f F ψ
13 12 4ralbii a A b B c C d D p E q F η a A b B c C d D e E f F ψ
14 11 13 bitri x A y B z C w D p E q F φ a A b B c C d D e E f F ψ