Metamath Proof Explorer


Theorem cbvral8vw

Description: Change bound variables of octuple restricted universal quantification, using implicit substitution. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypotheses cbvral8vw.1 x = a φ χ
cbvral8vw.2 y = b χ θ
cbvral8vw.3 z = c θ τ
cbvral8vw.4 w = d τ η
cbvral8vw.5 p = e η ζ
cbvral8vw.6 q = f ζ σ
cbvral8vw.7 r = g σ ρ
cbvral8vw.8 s = h ρ ψ
Assertion cbvral8vw x A y B z C w D p E q F r G s H φ a A b B c C d D e E f F g G h H ψ

Proof

Step Hyp Ref Expression
1 cbvral8vw.1 x = a φ χ
2 cbvral8vw.2 y = b χ θ
3 cbvral8vw.3 z = c θ τ
4 cbvral8vw.4 w = d τ η
5 cbvral8vw.5 p = e η ζ
6 cbvral8vw.6 q = f ζ σ
7 cbvral8vw.7 r = g σ ρ
8 cbvral8vw.8 s = h ρ ψ
9 1 4ralbidv x = a p E q F r G s H φ p E q F r G s H χ
10 2 4ralbidv y = b p E q F r G s H χ p E q F r G s H θ
11 3 4ralbidv z = c p E q F r G s H θ p E q F r G s H τ
12 4 4ralbidv w = d p E q F r G s H τ p E q F r G s H η
13 9 10 11 12 cbvral4vw x A y B z C w D p E q F r G s H φ a A b B c C d D p E q F r G s H η
14 5 6 7 8 cbvral4vw p E q F r G s H η e E f F g G h H ψ
15 14 4ralbii a A b B c C d D p E q F r G s H η a A b B c C d D e E f F g G h H ψ
16 13 15 bitri x A y B z C w D p E q F r G s H φ a A b B c C d D e E f F g G h H ψ