Metamath Proof Explorer


Theorem cbvralcsf

Description: A more general version of cbvralf that doesn't require A and B to be distinct from x or y . Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 _ y A
cbvralcsf.2 _ x B
cbvralcsf.3 y φ
cbvralcsf.4 x ψ
cbvralcsf.5 x = y A = B
cbvralcsf.6 x = y φ ψ
Assertion cbvralcsf x A φ y B ψ

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 _ y A
2 cbvralcsf.2 _ x B
3 cbvralcsf.3 y φ
4 cbvralcsf.4 x ψ
5 cbvralcsf.5 x = y A = B
6 cbvralcsf.6 x = y φ ψ
7 nfv z x A φ
8 nfcsb1v _ x z / x A
9 8 nfcri x z z / x A
10 nfsbc1v x [˙z / x]˙ φ
11 9 10 nfim x z z / x A [˙z / x]˙ φ
12 id x = z x = z
13 csbeq1a x = z A = z / x A
14 12 13 eleq12d x = z x A z z / x A
15 sbceq1a x = z φ [˙z / x]˙ φ
16 14 15 imbi12d x = z x A φ z z / x A [˙z / x]˙ φ
17 7 11 16 cbvalv1 x x A φ z z z / x A [˙z / x]˙ φ
18 nfcv _ y z
19 18 1 nfcsb _ y z / x A
20 19 nfcri y z z / x A
21 18 3 nfsbc y [˙z / x]˙ φ
22 20 21 nfim y z z / x A [˙z / x]˙ φ
23 nfv z y B ψ
24 id z = y z = y
25 csbeq1 z = y z / x A = y / x A
26 df-csb y / x A = v | [˙y / x]˙ v A
27 2 nfcri x v B
28 5 eleq2d x = y v A v B
29 27 28 sbie y x v A v B
30 sbsbc y x v A [˙y / x]˙ v A
31 29 30 bitr3i v B [˙y / x]˙ v A
32 31 abbi2i B = v | [˙y / x]˙ v A
33 26 32 eqtr4i y / x A = B
34 25 33 eqtrdi z = y z / x A = B
35 24 34 eleq12d z = y z z / x A y B
36 dfsbcq z = y [˙z / x]˙ φ [˙y / x]˙ φ
37 sbsbc y x φ [˙y / x]˙ φ
38 4 6 sbie y x φ ψ
39 37 38 bitr3i [˙y / x]˙ φ ψ
40 36 39 bitrdi z = y [˙z / x]˙ φ ψ
41 35 40 imbi12d z = y z z / x A [˙z / x]˙ φ y B ψ
42 22 23 41 cbvalv1 z z z / x A [˙z / x]˙ φ y y B ψ
43 17 42 bitri x x A φ y y B ψ
44 df-ral x A φ x x A φ
45 df-ral y B ψ y y B ψ
46 43 44 45 3bitr4i x A φ y B ψ