Metamath Proof Explorer


Theorem cbvralsvwOLD

Description: Obsolete version of cbvralsvw as of 21-Aug-2025. (Contributed by NM, 20-Nov-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 8-Mar-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cbvralsvwOLD x A φ y A y x φ

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nfs1v x y x φ
3 sbequ12 x = y φ y x φ
4 1 2 3 cbvralw x A φ y A y x φ