Metamath Proof Explorer


Theorem cbvreuvw

Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. Version of cbvreuv with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 5-Apr-2004) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvralvw.1 x = y φ ψ
Assertion cbvreuvw ∃! x A φ ∃! y A ψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 anbi12d x = y x A φ y A ψ
4 3 cbveuvw ∃! x x A φ ∃! y y A ψ
5 df-reu ∃! x A φ ∃! x x A φ
6 df-reu ∃! y A ψ ∃! y y A ψ
7 4 5 6 3bitr4i ∃! x A φ ∃! y A ψ