Metamath Proof Explorer


Theorem cbvreuvwOLD

Description: Obsolete version of cbvreuvw as of 30-Sep-2024. (Contributed by NM, 5-Apr-2004) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralvw.1 x = y φ ψ
Assertion cbvreuvwOLD ∃! x A φ ∃! y A ψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x = y φ ψ
2 nfv y φ
3 nfv x ψ
4 2 3 1 cbvreuw ∃! x A φ ∃! y A ψ