Metamath Proof Explorer


Theorem cbvrex2v

Description: Change bound variables of double restricted universal quantification, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrex2vw when possible. (Contributed by FL, 2-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrex2v.1 x = z φ χ
cbvrex2v.2 y = w χ ψ
Assertion cbvrex2v x A y B φ z A w B ψ

Proof

Step Hyp Ref Expression
1 cbvrex2v.1 x = z φ χ
2 cbvrex2v.2 y = w χ ψ
3 1 rexbidv x = z y B φ y B χ
4 3 cbvrexv x A y B φ z A y B χ
5 2 cbvrexv y B χ w B ψ
6 5 rexbii z A y B χ z A w B ψ
7 4 6 bitri x A y B φ z A w B ψ