Metamath Proof Explorer


Theorem cbvrexcsf

Description: A more general version of cbvrexf that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (Proof shortened by Mario Carneiro, 7-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralcsf.1 _ y A
cbvralcsf.2 _ x B
cbvralcsf.3 y φ
cbvralcsf.4 x ψ
cbvralcsf.5 x = y A = B
cbvralcsf.6 x = y φ ψ
Assertion cbvrexcsf x A φ y B ψ

Proof

Step Hyp Ref Expression
1 cbvralcsf.1 _ y A
2 cbvralcsf.2 _ x B
3 cbvralcsf.3 y φ
4 cbvralcsf.4 x ψ
5 cbvralcsf.5 x = y A = B
6 cbvralcsf.6 x = y φ ψ
7 3 nfn y ¬ φ
8 4 nfn x ¬ ψ
9 6 notbid x = y ¬ φ ¬ ψ
10 1 2 7 8 5 9 cbvralcsf x A ¬ φ y B ¬ ψ
11 10 notbii ¬ x A ¬ φ ¬ y B ¬ ψ
12 dfrex2 x A φ ¬ x A ¬ φ
13 dfrex2 y B ψ ¬ y B ¬ ψ
14 11 12 13 3bitr4i x A φ y B ψ