Metamath Proof Explorer


Theorem cbvrexdva

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis cbvraldva.1 φ x = y ψ χ
Assertion cbvrexdva φ x A ψ y A χ

Proof

Step Hyp Ref Expression
1 cbvraldva.1 φ x = y ψ χ
2 eqidd φ x = y A = A
3 1 2 cbvrexdva2 φ x A ψ y A χ