Metamath Proof Explorer


Theorem cbvrexdva2

Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 8-Jan-2025)

Ref Expression
Hypotheses cbvraldva2.1 φ x = y ψ χ
cbvraldva2.2 φ x = y A = B
Assertion cbvrexdva2 φ x A ψ y B χ

Proof

Step Hyp Ref Expression
1 cbvraldva2.1 φ x = y ψ χ
2 cbvraldva2.2 φ x = y A = B
3 1 notbid φ x = y ¬ ψ ¬ χ
4 3 2 cbvraldva2 φ x A ¬ ψ y B ¬ χ
5 ralnex x A ¬ ψ ¬ x A ψ
6 ralnex y B ¬ χ ¬ y B χ
7 4 5 6 3bitr3g φ ¬ x A ψ ¬ y B χ
8 7 con4bid φ x A ψ y B χ