Metamath Proof Explorer


Theorem cbvrexdvaOLD

Description: Obsolete version of cbvrexdva as of 9-Mar-2025. (Contributed by David Moews, 1-May-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis cbvrexdva.1 φ x = y ψ χ
Assertion cbvrexdvaOLD φ x A ψ y A χ

Proof

Step Hyp Ref Expression
1 cbvrexdva.1 φ x = y ψ χ
2 eqidd φ x = y A = A
3 1 2 cbvrexdva2 φ x A ψ y A χ