Metamath Proof Explorer


Theorem cbvrexf

Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexfw when possible. (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses cbvralf.1 _ x A
cbvralf.2 _ y A
cbvralf.3 y φ
cbvralf.4 x ψ
cbvralf.5 x = y φ ψ
Assertion cbvrexf x A φ y A ψ

Proof

Step Hyp Ref Expression
1 cbvralf.1 _ x A
2 cbvralf.2 _ y A
3 cbvralf.3 y φ
4 cbvralf.4 x ψ
5 cbvralf.5 x = y φ ψ
6 3 nfn y ¬ φ
7 4 nfn x ¬ ψ
8 5 notbid x = y ¬ φ ¬ ψ
9 1 2 6 7 8 cbvralf x A ¬ φ y A ¬ ψ
10 9 notbii ¬ x A ¬ φ ¬ y A ¬ ψ
11 dfrex2 x A φ ¬ x A ¬ φ
12 dfrex2 y A ψ ¬ y A ¬ ψ
13 10 11 12 3bitr4i x A φ y A ψ