Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvrexf
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution. Usage
of this theorem is discouraged because it depends on ax-13 . Use the
weaker cbvrexfw when possible. (Contributed by FL , 27-Apr-2008)
(Revised by Mario Carneiro , 9-Oct-2016) (New usage is discouraged.)
Ref
Expression
Hypotheses
cbvralf.1
⊢ Ⅎ _ x A
cbvralf.2
⊢ Ⅎ _ y A
cbvralf.3
⊢ Ⅎ y φ
cbvralf.4
⊢ Ⅎ x ψ
cbvralf.5
⊢ x = y → φ ↔ ψ
Assertion
cbvrexf
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
cbvralf.1
⊢ Ⅎ _ x A
2
cbvralf.2
⊢ Ⅎ _ y A
3
cbvralf.3
⊢ Ⅎ y φ
4
cbvralf.4
⊢ Ⅎ x ψ
5
cbvralf.5
⊢ x = y → φ ↔ ψ
6
3
nfn
⊢ Ⅎ y ¬ φ
7
4
nfn
⊢ Ⅎ x ¬ ψ
8
5
notbid
⊢ x = y → ¬ φ ↔ ¬ ψ
9
1 2 6 7 8
cbvralf
⊢ ∀ x ∈ A ¬ φ ↔ ∀ y ∈ A ¬ ψ
10
9
notbii
⊢ ¬ ∀ x ∈ A ¬ φ ↔ ¬ ∀ y ∈ A ¬ ψ
11
dfrex2
⊢ ∃ x ∈ A φ ↔ ¬ ∀ x ∈ A ¬ φ
12
dfrex2
⊢ ∃ y ∈ A ψ ↔ ¬ ∀ y ∈ A ¬ ψ
13
10 11 12
3bitr4i
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A ψ