Metamath Proof Explorer


Theorem cbvrexfw

Description: Rule used to change bound variables, using implicit substitution. Version of cbvrexf with a disjoint variable condition, which does not require ax-13 . (Contributed by FL, 27-Apr-2008) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvrexfw.1 _ x A
cbvrexfw.2 _ y A
cbvrexfw.3 y φ
cbvrexfw.4 x ψ
cbvrexfw.5 x = y φ ψ
Assertion cbvrexfw x A φ y A ψ

Proof

Step Hyp Ref Expression
1 cbvrexfw.1 _ x A
2 cbvrexfw.2 _ y A
3 cbvrexfw.3 y φ
4 cbvrexfw.4 x ψ
5 cbvrexfw.5 x = y φ ψ
6 3 nfn y ¬ φ
7 4 nfn x ¬ ψ
8 5 notbid x = y ¬ φ ¬ ψ
9 1 2 6 7 8 cbvralfw x A ¬ φ y A ¬ ψ
10 9 notbii ¬ x A ¬ φ ¬ y A ¬ ψ
11 dfrex2 x A φ ¬ x A ¬ φ
12 dfrex2 y A ψ ¬ y A ¬ ψ
13 10 11 12 3bitr4i x A φ y A ψ