Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvrexfw
Metamath Proof Explorer
Description: Rule used to change bound variables, using implicit substitution.
Version of cbvrexf with a disjoint variable condition, which does not
require ax-13 . (Contributed by FL , 27-Apr-2008) (Revised by Gino
Giotto , 10-Jan-2024)
Ref
Expression
Hypotheses
cbvrexfw.1
⊢ Ⅎ _ x A
cbvrexfw.2
⊢ Ⅎ _ y A
cbvrexfw.3
⊢ Ⅎ y φ
cbvrexfw.4
⊢ Ⅎ x ψ
cbvrexfw.5
⊢ x = y → φ ↔ ψ
Assertion
cbvrexfw
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
cbvrexfw.1
⊢ Ⅎ _ x A
2
cbvrexfw.2
⊢ Ⅎ _ y A
3
cbvrexfw.3
⊢ Ⅎ y φ
4
cbvrexfw.4
⊢ Ⅎ x ψ
5
cbvrexfw.5
⊢ x = y → φ ↔ ψ
6
3
nfn
⊢ Ⅎ y ¬ φ
7
4
nfn
⊢ Ⅎ x ¬ ψ
8
5
notbid
⊢ x = y → ¬ φ ↔ ¬ ψ
9
1 2 6 7 8
cbvralfw
⊢ ∀ x ∈ A ¬ φ ↔ ∀ y ∈ A ¬ ψ
10
9
notbii
⊢ ¬ ∀ x ∈ A ¬ φ ↔ ¬ ∀ y ∈ A ¬ ψ
11
dfrex2
⊢ ∃ x ∈ A φ ↔ ¬ ∀ x ∈ A ¬ φ
12
dfrex2
⊢ ∃ y ∈ A ψ ↔ ¬ ∀ y ∈ A ¬ ψ
13
10 11 12
3bitr4i
⊢ ∃ x ∈ A φ ↔ ∃ y ∈ A ψ