Metamath Proof Explorer


Theorem cbvrexv

Description: Change the bound variable of a restricted existential quantifier using implicit substitution. See cbvrexvw based on fewer axioms , but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexvw when possible. (Contributed by NM, 2-Jun-1998) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralv.1 x = y φ ψ
Assertion cbvrexv x A φ y A ψ

Proof

Step Hyp Ref Expression
1 cbvralv.1 x = y φ ψ
2 nfv y φ
3 nfv x ψ
4 2 3 1 cbvrex x A φ y A ψ