Metamath Proof Explorer


Theorem cbvriotavw

Description: Change bound variable in a restricted description binder. Version of cbvriotav with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvriotavw.1 x = y φ ψ
Assertion cbvriotavw ι x A | φ = ι y A | ψ

Proof

Step Hyp Ref Expression
1 cbvriotavw.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 anbi12d x = y x A φ y A ψ
4 3 cbviotavw ι x | x A φ = ι y | y A ψ
5 df-riota ι x A | φ = ι x | x A φ
6 df-riota ι y A | ψ = ι y | y A ψ
7 4 5 6 3eqtr4i ι x A | φ = ι y A | ψ