Metamath Proof Explorer


Theorem cbvriotaw

Description: Change bound variable in a restricted description binder. Version of cbvriota with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Mar-2013) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses cbvriotaw.1 y φ
cbvriotaw.2 x ψ
cbvriotaw.3 x = y φ ψ
Assertion cbvriotaw ι x A | φ = ι y A | ψ

Proof

Step Hyp Ref Expression
1 cbvriotaw.1 y φ
2 cbvriotaw.2 x ψ
3 cbvriotaw.3 x = y φ ψ
4 eleq1w x = z x A z A
5 sbequ12 x = z φ z x φ
6 4 5 anbi12d x = z x A φ z A z x φ
7 nfv z x A φ
8 nfv x z A
9 nfs1v x z x φ
10 8 9 nfan x z A z x φ
11 6 7 10 cbviotaw ι x | x A φ = ι z | z A z x φ
12 eleq1w z = y z A y A
13 2 3 sbhypf z = y z x φ ψ
14 12 13 anbi12d z = y z A z x φ y A ψ
15 nfv y z A
16 1 nfsbv y z x φ
17 15 16 nfan y z A z x φ
18 nfv z y A ψ
19 14 17 18 cbviotaw ι z | z A z x φ = ι y | y A ψ
20 11 19 eqtri ι x | x A φ = ι y | y A ψ
21 df-riota ι x A | φ = ι x | x A φ
22 df-riota ι y A | ψ = ι y | y A ψ
23 20 21 22 3eqtr4i ι x A | φ = ι y A | ψ