Metamath Proof Explorer


Theorem cbvrmov

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Alexander van der Vekens, 17-Jun-2017) (New usage is discouraged.)

Ref Expression
Hypothesis cbvralv.1 x = y φ ψ
Assertion cbvrmov * x A φ * y A ψ

Proof

Step Hyp Ref Expression
1 cbvralv.1 x = y φ ψ
2 nfv y φ
3 nfv x ψ
4 2 3 1 cbvrmo * x A φ * y A ψ