Metamath Proof Explorer


Theorem cbvrmovw

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmov with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 30-Sep-2024)

Ref Expression
Hypothesis cbvralvw.1 x = y φ ψ
Assertion cbvrmovw * x A φ * y A ψ

Proof

Step Hyp Ref Expression
1 cbvralvw.1 x = y φ ψ
2 eleq1w x = y x A y A
3 2 1 anbi12d x = y x A φ y A ψ
4 3 cbvmovw * x x A φ * y y A ψ
5 df-rmo * x A φ * x x A φ
6 df-rmo * y A ψ * y y A ψ
7 4 5 6 3bitr4i * x A φ * y A ψ