Metamath Proof Explorer


Theorem cbvrmow

Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypotheses cbvrmow.1 y φ
cbvrmow.2 x ψ
cbvrmow.3 x = y φ ψ
Assertion cbvrmow * x A φ * y A ψ

Proof

Step Hyp Ref Expression
1 cbvrmow.1 y φ
2 cbvrmow.2 x ψ
3 cbvrmow.3 x = y φ ψ
4 nfv y x A
5 4 1 nfan y x A φ
6 nfv x y A
7 6 2 nfan x y A ψ
8 eleq1w x = y x A y A
9 8 3 anbi12d x = y x A φ y A ψ
10 5 7 9 cbvmow * x x A φ * y y A ψ
11 df-rmo * x A φ * x x A φ
12 df-rmo * y A ψ * y y A ψ
13 10 11 12 3bitr4i * x A φ * y A ψ