Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
cbvrmow
Metamath Proof Explorer
Description: Change the bound variable of a restricted at-most-one quantifier using
implicit substitution. Version of cbvrmo with a disjoint variable
condition, which does not require ax-10 , ax-13 . (Contributed by NM , 16-Jun-2017) (Revised by Gino Giotto , 23-May-2024)
Ref
Expression
Hypotheses
cbvrmow.1
⊢ Ⅎ y φ
cbvrmow.2
⊢ Ⅎ x ψ
cbvrmow.3
⊢ x = y → φ ↔ ψ
Assertion
cbvrmow
⊢ ∃ * x ∈ A φ ↔ ∃ * y ∈ A ψ
Proof
Step
Hyp
Ref
Expression
1
cbvrmow.1
⊢ Ⅎ y φ
2
cbvrmow.2
⊢ Ⅎ x ψ
3
cbvrmow.3
⊢ x = y → φ ↔ ψ
4
nfv
⊢ Ⅎ y x ∈ A
5
4 1
nfan
⊢ Ⅎ y x ∈ A ∧ φ
6
nfv
⊢ Ⅎ x y ∈ A
7
6 2
nfan
⊢ Ⅎ x y ∈ A ∧ ψ
8
eleq1w
⊢ x = y → x ∈ A ↔ y ∈ A
9
8 3
anbi12d
⊢ x = y → x ∈ A ∧ φ ↔ y ∈ A ∧ ψ
10
5 7 9
cbvmow
⊢ ∃ * x x ∈ A ∧ φ ↔ ∃ * y y ∈ A ∧ ψ
11
df-rmo
⊢ ∃ * x ∈ A φ ↔ ∃ * x x ∈ A ∧ φ
12
df-rmo
⊢ ∃ * y ∈ A ψ ↔ ∃ * y y ∈ A ∧ ψ
13
10 11 12
3bitr4i
⊢ ∃ * x ∈ A φ ↔ ∃ * y ∈ A ψ