Metamath Proof Explorer


Theorem cbvrmowOLD

Description: Obsolete version of cbvrmow as of 23-May-2024. (Contributed by NM, 16-Jun-2017) (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses cbvrmowOLD.1 y φ
cbvrmowOLD.2 x ψ
cbvrmowOLD.3 x = y φ ψ
Assertion cbvrmowOLD * x A φ * y A ψ

Proof

Step Hyp Ref Expression
1 cbvrmowOLD.1 y φ
2 cbvrmowOLD.2 x ψ
3 cbvrmowOLD.3 x = y φ ψ
4 1 2 3 cbvrexw x A φ y A ψ
5 1 2 3 cbvreuw ∃! x A φ ∃! y A ψ
6 4 5 imbi12i x A φ ∃! x A φ y A ψ ∃! y A ψ
7 rmo5 * x A φ x A φ ∃! x A φ
8 rmo5 * y A ψ y A ψ ∃! y A ψ
9 6 7 8 3bitr4i * x A φ * y A ψ