Metamath Proof Explorer


Theorem cbvsbc

Description: Change bound variables in a wff substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcw when possible. (Contributed by Jeff Hankins, 19-Sep-2009) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cbvsbc.1 y φ
cbvsbc.2 x ψ
cbvsbc.3 x = y φ ψ
Assertion cbvsbc [˙A / x]˙ φ [˙A / y]˙ ψ

Proof

Step Hyp Ref Expression
1 cbvsbc.1 y φ
2 cbvsbc.2 x ψ
3 cbvsbc.3 x = y φ ψ
4 1 2 3 cbvab x | φ = y | ψ
5 4 eleq2i A x | φ A y | ψ
6 df-sbc [˙A / x]˙ φ A x | φ
7 df-sbc [˙A / y]˙ ψ A y | ψ
8 5 6 7 3bitr4i [˙A / x]˙ φ [˙A / y]˙ ψ