Metamath Proof Explorer


Theorem cbvsbcv

Description: Change the bound variable of a class substitution using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvsbcvw when possible. (Contributed by NM, 30-Sep-2008) (Revised by Mario Carneiro, 13-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypothesis cbvsbcv.1 x = y φ ψ
Assertion cbvsbcv [˙A / x]˙ φ [˙A / y]˙ ψ

Proof

Step Hyp Ref Expression
1 cbvsbcv.1 x = y φ ψ
2 nfv y φ
3 nfv x ψ
4 2 3 1 cbvsbc [˙A / x]˙ φ [˙A / y]˙ ψ