Metamath Proof Explorer


Theorem cbvsbcw

Description: Change bound variables in a wff substitution. Version of cbvsbc with a disjoint variable condition, which does not require ax-13 . (Contributed by Jeff Hankins, 19-Sep-2009) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses cbvsbcw.1 y φ
cbvsbcw.2 x ψ
cbvsbcw.3 x = y φ ψ
Assertion cbvsbcw [˙A / x]˙ φ [˙A / y]˙ ψ

Proof

Step Hyp Ref Expression
1 cbvsbcw.1 y φ
2 cbvsbcw.2 x ψ
3 cbvsbcw.3 x = y φ ψ
4 1 2 3 cbvabw x | φ = y | ψ
5 4 eleq2i A x | φ A y | ψ
6 df-sbc [˙A / x]˙ φ A x | φ
7 df-sbc [˙A / y]˙ ψ A y | ψ
8 5 6 7 3bitr4i [˙A / x]˙ φ [˙A / y]˙ ψ