Metamath Proof Explorer


Theorem cbvsbv

Description: Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was extracted from a former cbvabv version. (Contributed by Wolf Lammen, 16-Mar-2025)

Ref Expression
Hypothesis cbvsbv.1 x = y φ ψ
Assertion cbvsbv z x φ z y ψ

Proof

Step Hyp Ref Expression
1 cbvsbv.1 x = y φ ψ
2 sbco2vv z y y x φ z x φ
3 1 sbievw y x φ ψ
4 3 sbbii z y y x φ z y ψ
5 2 4 bitr3i z x φ z y ψ