Metamath Proof Explorer


Theorem cbvsbvf

Description: Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was part of a former cbvabw version. (Contributed by GG and WL, 26-Oct-2024)

Ref Expression
Hypotheses cbvsbvf.1 y φ
cbvsbvf.2 x ψ
cbvsbvf.3 x = y φ ψ
Assertion cbvsbvf z x φ z y ψ

Proof

Step Hyp Ref Expression
1 cbvsbvf.1 y φ
2 cbvsbvf.2 x ψ
3 cbvsbvf.3 x = y φ ψ
4 nfv y x = w
5 4 1 nfim y x = w φ
6 nfv x y = w
7 6 2 nfim x y = w ψ
8 equequ1 x = y x = w y = w
9 8 3 imbi12d x = y x = w φ y = w ψ
10 5 7 9 cbvalv1 x x = w φ y y = w ψ
11 10 imbi2i w = z x x = w φ w = z y y = w ψ
12 11 albii w w = z x x = w φ w w = z y y = w ψ
13 df-sb z x φ w w = z x x = w φ
14 df-sb z y ψ w w = z y y = w ψ
15 12 13 14 3bitr4i z x φ z y ψ