Metamath Proof Explorer


Theorem ccase

Description: Inference for combining cases. (Contributed by NM, 29-Jul-1999) (Proof shortened by Wolf Lammen, 6-Jan-2013)

Ref Expression
Hypotheses ccase.1 φ ψ τ
ccase.2 χ ψ τ
ccase.3 φ θ τ
ccase.4 χ θ τ
Assertion ccase φ χ ψ θ τ

Proof

Step Hyp Ref Expression
1 ccase.1 φ ψ τ
2 ccase.2 χ ψ τ
3 ccase.3 φ θ τ
4 ccase.4 χ θ τ
5 1 2 jaoian φ χ ψ τ
6 3 4 jaoian φ χ θ τ
7 5 6 jaodan φ χ ψ θ τ