Metamath Proof Explorer


Theorem ccased

Description: Deduction for combining cases. (Contributed by NM, 9-May-2004)

Ref Expression
Hypotheses ccased.1 φ ψ χ η
ccased.2 φ θ χ η
ccased.3 φ ψ τ η
ccased.4 φ θ τ η
Assertion ccased φ ψ θ χ τ η

Proof

Step Hyp Ref Expression
1 ccased.1 φ ψ χ η
2 ccased.2 φ θ χ η
3 ccased.3 φ ψ τ η
4 ccased.4 φ θ τ η
5 1 com12 ψ χ φ η
6 2 com12 θ χ φ η
7 3 com12 ψ τ φ η
8 4 com12 θ τ φ η
9 5 6 7 8 ccase ψ θ χ τ φ η
10 9 com12 φ ψ θ χ τ η