Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations with singleton words
ccat2s1fst
Metamath Proof Explorer
Description: The first symbol of the concatenation of a word with two single symbols.
(Contributed by Alexander van der Vekens , 22-Sep-2018) (Revised by AV , 28-Jan-2024)
Ref
Expression
Assertion
ccat2s1fst
⊢ W ∈ Word V ∧ 0 < W → W ++ 〈“ X ”〉 ++ 〈“ Y ”〉 ⁡ 0 = W ⁡ 0
Proof
Step
Hyp
Ref
Expression
1
0nn0
⊢ 0 ∈ ℕ 0
2
ccat2s1fvw
⊢ W ∈ Word V ∧ 0 ∈ ℕ 0 ∧ 0 < W → W ++ 〈“ X ”〉 ++ 〈“ Y ”〉 ⁡ 0 = W ⁡ 0
3
1 2
mp3an2
⊢ W ∈ Word V ∧ 0 < W → W ++ 〈“ X ”〉 ++ 〈“ Y ”〉 ⁡ 0 = W ⁡ 0