Metamath Proof Explorer


Theorem ccat2s1fvwALTOLD

Description: Obsolete version of ccat2s1fvwALT as of 28-Jan-2024. Alternate proof of ccat2s1fvwOLD using words of length 2, see df-s2 . A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ccat2s1fvwALTOLD W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I

Proof

Step Hyp Ref Expression
1 simp1 W Word V I 0 I < W W Word V
2 1 anim1i W Word V I 0 I < W X V Y V W Word V X V Y V
3 3anass W Word V X V Y V W Word V X V Y V
4 2 3 sylibr W Word V I 0 I < W X V Y V W Word V X V Y V
5 ccatw2s1ccatws2OLD W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ XY ”⟩
6 5 fveq1d W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W ++ ⟨“ XY ”⟩ I
7 4 6 syl W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W ++ ⟨“ XY ”⟩ I
8 1 adantr W Word V I 0 I < W X V Y V W Word V
9 s2cl X V Y V ⟨“ XY ”⟩ Word V
10 9 adantl W Word V I 0 I < W X V Y V ⟨“ XY ”⟩ Word V
11 simp2 W Word V I 0 I < W I 0
12 lencl W Word V W 0
13 12 nn0zd W Word V W
14 13 3ad2ant1 W Word V I 0 I < W W
15 simp3 W Word V I 0 I < W I < W
16 elfzo0z I 0 ..^ W I 0 W I < W
17 11 14 15 16 syl3anbrc W Word V I 0 I < W I 0 ..^ W
18 17 adantr W Word V I 0 I < W X V Y V I 0 ..^ W
19 ccatval1 W Word V ⟨“ XY ”⟩ Word V I 0 ..^ W W ++ ⟨“ XY ”⟩ I = W I
20 8 10 18 19 syl3anc W Word V I 0 I < W X V Y V W ++ ⟨“ XY ”⟩ I = W I
21 7 20 eqtrd W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I