Metamath Proof Explorer


Theorem ccat2s1fvwOLD

Description: Obsolete version of ccat2s1fvw as of 28-Jan-2024. Extract a symbol of a word from the concatenation of the word with two single symbols. (Contributed by AV, 22-Sep-2018) (Revised by AV, 13-Jan-2020) (Proof shortened by AV, 1-May-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ccat2s1fvwOLD W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I

Proof

Step Hyp Ref Expression
1 ccatw2s1assOLD W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
2 1 3expb W Word V X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
3 2 3ad2antl1 W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩
4 3 fveq1d W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I
5 simpl1 W Word V I 0 I < W X V Y V W Word V
6 ccat2s1cl X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V
7 6 adantl W Word V I 0 I < W X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V
8 simp2 W Word V I 0 I < W I 0
9 lencl W Word V W 0
10 9 3ad2ant1 W Word V I 0 I < W W 0
11 nn0ge0 I 0 0 I
12 11 adantl W Word V I 0 0 I
13 0red W Word V I 0 0
14 nn0re I 0 I
15 14 adantl W Word V I 0 I
16 9 nn0red W Word V W
17 16 adantr W Word V I 0 W
18 lelttr 0 I W 0 I I < W 0 < W
19 13 15 17 18 syl3anc W Word V I 0 0 I I < W 0 < W
20 12 19 mpand W Word V I 0 I < W 0 < W
21 20 3impia W Word V I 0 I < W 0 < W
22 elnnnn0b W W 0 0 < W
23 10 21 22 sylanbrc W Word V I 0 I < W W
24 simp3 W Word V I 0 I < W I < W
25 elfzo0 I 0 ..^ W I 0 W I < W
26 8 23 24 25 syl3anbrc W Word V I 0 I < W I 0 ..^ W
27 26 adantr W Word V I 0 I < W X V Y V I 0 ..^ W
28 ccatval1 W Word V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ Word V I 0 ..^ W W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I
29 5 7 27 28 syl3anc W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I
30 4 29 eqtrd W Word V I 0 I < W X V Y V W ++ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ I = W I