Metamath Proof Explorer


Theorem ccat2s1lenOLD

Description: Obsolete version of ccat2s1len as of 14-Jan-2024. The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ccat2s1lenOLD X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = 2

Proof

Step Hyp Ref Expression
1 s1cl X V ⟨“ X ”⟩ Word V
2 s1cl Y V ⟨“ Y ”⟩ Word V
3 ccatlenOLD ⟨“ X ”⟩ Word V ⟨“ Y ”⟩ Word V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = ⟨“ X ”⟩ + ⟨“ Y ”⟩
4 s1len ⟨“ X ”⟩ = 1
5 s1len ⟨“ Y ”⟩ = 1
6 4 5 oveq12i ⟨“ X ”⟩ + ⟨“ Y ”⟩ = 1 + 1
7 1p1e2 1 + 1 = 2
8 6 7 eqtri ⟨“ X ”⟩ + ⟨“ Y ”⟩ = 2
9 3 8 eqtrdi ⟨“ X ”⟩ Word V ⟨“ Y ”⟩ Word V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = 2
10 1 2 9 syl2an X V Y V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ = 2