Metamath Proof Explorer


Theorem ccat2s1p1

Description: Extract the first of two concatenated singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018) (Revised by JJ, 20-Jan-2024)

Ref Expression
Assertion ccat2s1p1 X V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ 0 = X

Proof

Step Hyp Ref Expression
1 s1cli ⟨“ X ”⟩ Word V
2 s1cli ⟨“ Y ”⟩ Word V
3 s1len ⟨“ X ”⟩ = 1
4 1nn 1
5 3 4 eqeltri ⟨“ X ”⟩
6 lbfzo0 0 0 ..^ ⟨“ X ”⟩ ⟨“ X ”⟩
7 5 6 mpbir 0 0 ..^ ⟨“ X ”⟩
8 ccatval1 ⟨“ X ”⟩ Word V ⟨“ Y ”⟩ Word V 0 0 ..^ ⟨“ X ”⟩ ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ 0 = ⟨“ X ”⟩ 0
9 1 2 7 8 mp3an ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ 0 = ⟨“ X ”⟩ 0
10 s1fv X V ⟨“ X ”⟩ 0 = X
11 9 10 eqtrid X V ⟨“ X ”⟩ ++ ⟨“ Y ”⟩ 0 = X